

Overview

An Oracle database health check involves a thorough review of the database's performance, configuration, and security to ensure optimal operation. It typically includes examining system resource usage (CPU, memory, and storage), checking database logs for errors, and verifying backup and recovery processes. Performance metrics such as query response times, index efficiency, and I/O bottlenecks are analyzed to identify potential issues. A health check also assesses database security by reviewing user access, roles, and privileges. Regular checks help detect early signs of failure or inefficiency, ensuring that the database runs smoothly and securely.

Oracle database deployment and design are critical to ensuring the system is robust, scalable, and efficient. The deployment process involves installing the database on physical or virtual servers, configuring the storage, memory, and network settings for optimal performance, and setting up failover options like Oracle RAC or Data Guard for high availability.

Fundamentally, Oracle's architecture follows a multi-tiered approach with the **instance** (memory and background processes), the **database** (physical storage), and **clients** (applications) interacting with it. Key components include tablespaces, data files, redo logs, and control files, which manage data and recovery. Security, backup strategies, and efficient indexing are essential in the design phase to meet business continuity, performance, and security requirements.

The design should also account for scalability, by utilizing Oracle's partitioning, clustering, and load balancing features, while maintaining security through role-based access and encryption.

Improving Oracle Database performance involves several strategies. First, optimizing SQL queries can significantly reduce execution time. Second, proper indexing can enhance data retrieval speed. Third, regular database maintenance, such as statistics collection and defragmentation, ensures optimal performance. Fourth, using Oracle's built-in performance tuning tools, like Automatic Workload Repository (AWR) and SQL Tuning Advisor, helps identify and resolve bottlenecks. Lastly, scaling hardware resources, such as CPU and memory, can provide the necessary power for high-demand operations.

Below are some major categories involve to perform Health check of Oracle Database.

- Oracle Database Architecture Health Check
- 2. Oracle Database Engine Health Check
- 3. Oracle Database Processes Level Health Check

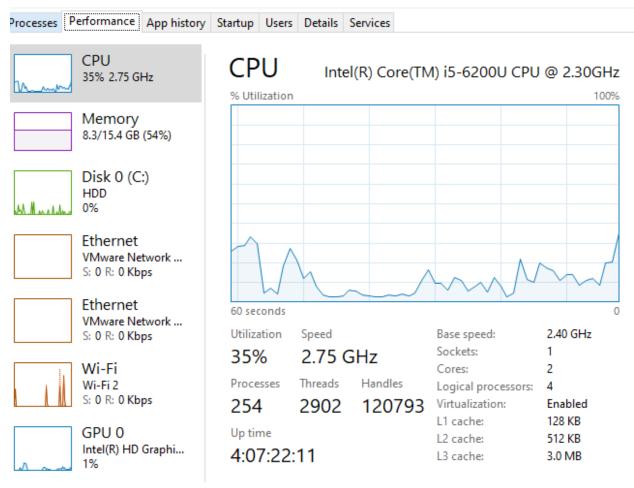
Oracle Database Architecture Health Check

Oracle Database Architecture Health Check ensures optimal performance, much like reviewing the core components of a computer. The database's memory (SGA and PGA) must be balanced to handle workloads efficiently. ASM (Automatic Storage Management) is used to manage datafiles for efficient disk I/O. Critical components like Redo Log files are stored on fast, high-performance storage for quick recovery, while Archive logs are placed on separate storage for point-in-time recovery. Regular backups are stored on tape drives or other media, isolated from the main database storage, ensuring data protection.

Check CPU Utilization

Top

```
op - 17:30:56 up 5 min,
                          l user,
                                   load average: 0.02, 0.31,
Tasks: 245 total,
                    1 running, 244 sleeping,
                                                0 stopped,
                                                              0 zombie
%Cpu(s): 0.0 us,
                   0.1 sy, 0.0 ni, 99.8 id,
                                               0.0 wa,
                                                        0.1 hi,
                                                                  0.1 si,
                                                                           0.0 st
MiB Mem :
            2624.4 total,
                            1555.9 free,
                                             517.1 used,
                                                             551.5 buff/cache
                                                            1929.5 avail Mem
            2048.0 total,
                            2048.0 free,
MiB Swap:
                                               0.0 used.
                            VIRT
                                     RES
                                                   %CPU %MEM
                                                                   TIME+ COMMAND
    PID USER
                  PR NI
                                            SHR S
                                          15752 S
   1083 root
                  20
                          695856
                                   30112
                                                                 0:02.58 tuned
                  20
                          141176
                                    5660
                                           4336 S
                                                    0.3
                                                           0.2
                                                                 0:00.02 sshd
   2508 oracle
                          264228
                                    4524
                                           3644 R
                                                           0.2
   2574 oracle
                  20
                       0
                                                    0.3
                                                                 0:00.30 top
                                   14028
      1 root
                  20
                          241336
                                           8904 S
                                                    0.0
                                                           0.5
                                                                 0:03.69 systemd
      2 root
                  20
                                              0 S
                                                    0.0
                                                           0.0
                                                                 0:00.05 kthreadd
```


cat /proc/stat

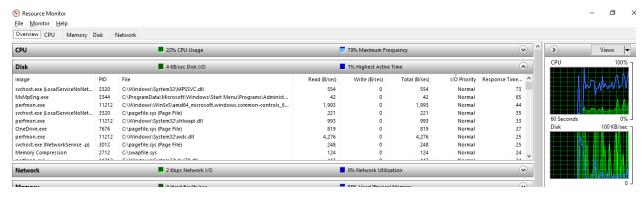
yum install sysstat mpstat

05:36:44 %gnice		%usr	%nice	olo	sys %i	owait		%irq %:	soft	%st	eal %gue	est
_	PM all	1.27	0.00	1	.56	3.64		0.32	0.13	0	.00 0.	00
r Task M	anager									_	□ ×	<
File Optio	ons View											
Processes	Performance	App history	Startup	Users	Details	Services						
Name			Statu	S		26	% PU	53% Memory	~	11% Disk	0% Network	
■ Sys	stem					0.3	3%	0.1 MB	0.1	MB/s	0 Mbps	^
> 🔯 Se	rvice Host: Con	nected Device				0.3	3%	8.8 MB	0.1	MB/s	0 Mbps	
> 🔯 Se	rvice Host: Win	dows Event Lo	g			()%	9.8 MB	0.1	MB/s	0 Mbps	
Microsoft SharePoint						(0%	2.1 MB	0.1	MB/s	0 Mbps	
■ Registry						()%	6.3 MB	0.1	MB/s	0 Mbps	
> 1 Mi	> ii Microsoft Teams (12)						0%	248.7 MB	0.1	MB/s	0 Mbps	
	- A.E. 64E.1 6 111							22.21.42				

• Check Storage I/O

iostat

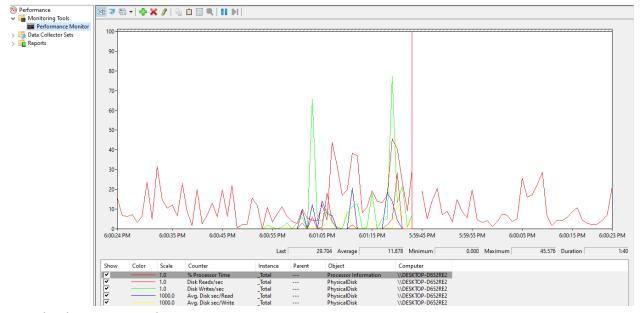
India 5.1	.0.0 200	.101127.0	e18uek.x86_64	(abbingici)	09/25	/ 2021	_x86_64_	(4 CPU)
vg-cpu:	%user	%nice %	system %iowa	it %steal	%idle			
	0.65			81 0.00	96.45			
evice		tps	kB read/s	kB wrtn/s	kB read	kB wrtn		
vme0n1		8.65	503.31	21.14	707083	29701		
cd0		0.12	9.75		13702			
m-0		8.19	462.77	19.61	650130	27553		
m-1		0.07	1.58		2220			
dc			2.87	0.01	4029			
db		5.91	29.35	0.10	41233	144		
dd		0.07	1.68		2365			
da		0.07	1.78		2500			


yum install iotop iotop

Total DISK READ :	0.00 B/s T	otal DISK WRITE: 10.99 K/s
Actual DISK READ:	875.72 K/s A	Actual DISK WRITE: 0.00 B/s
TID PRIO USER	DISK READ DI	SK WRITE> COMMAND
2866 be/7 root	0.00 B/s	10.99 K/s mandb -q
1 be/4 root	0.00 B/s	0.00 B/s systemdswitched-rootsystemdeserialize 17
2 be/4 root	0.00 B/s	0.00 B/s [kthreadd]
3 be/0 root	0.00 B/s	0.00 B/s [rcu_gp]
4 be/0 root	0.00 B/s	0.00 B/s [rcu_par_gp]
5 be/0 root	0.00 B/s	0.00 B/s [slub_flushwq]
6 be/0 root	0.00 B/s	0.00 B/s [netns]
8 be/0 root	0.00 B/s	0.00 B/s [kworker/0:0H-events_highpri]
10 be/0 root	0.00 B/s	0.00 B/s [kworker/0:1H-events_highpri]
11 be/0 root	0.00 B/s	0.00 B/s [mm_percpu_wq]
12 be/4 root	0.00 B/s	0.00 B/s [rcu_tasks_rude_]
13 be/4 root	0.00 B/s	0.00 B/s [rcu_tasks_trace]
14 be/4 root		0.00 B/s [ksoftirqd/0]
15 be/4 root		
16 rt/4 root	0.00 B/s	0.00 B/s [migration/0]
18 be/4 root	0.00 B/s	0.00 B/s [cpuhp/0]
19 be/4 root	0.00 B/s	0.00 B/s [cpuhp/1]
20 rt/4 root	0.00 B/s	0.00 B/s [migration/1]
21 be/4 root	0.00 B/s	0.00 B/s [ksoftirqd/l]
23 be/0 root	0.00 B/s	0.00 B/s [kworker/1:0H-events_highpri]
24 be/4 root		
25 rt/4 root		
26 be/4 root	0.00 B/s	0.00 B/s [ksoftirqd/2]
28 be/0 root		
29 be/4 root	0.00 B/s	0.00 B/s [cpuhp/3]

Using Resource Monitor:

- Press Ctrl + Shift + Esc to open Task Manager.
- Go to the **Performance** tab and click **Open Resource Monitor** at the bottom.
- Switch to the **Disk** tab in Resource Monitor.
- Here, you can monitor disk I/O statistics, including:
 - o **Disk Reads/sec**: Number of read operations per second.
 - o **Disk Writes/sec**: Number of write operations per second.
 - o **Disk Queue Length**: The length of the queue of I/O operations waiting for disk access.



Using Performance Monitor (PerfMon):

- Press Windows + R, type perfmon, and press Enter.
- In **Performance Monitor**, add counters for disk-related metrics:
 - o Right-click on **Performance Monitor** in the left panel.
 - Click Add Counters.
 - Choose PhysicalDisk and select counters such as:
 - Disk Reads/sec
 - Disk Writes/sec
 - Avg. Disk sec/Read
 - Avg. Disk sec/Write
 - Disk Queue Length

These counters give detailed real-time data about I/O performance.

Check Memory Utilization

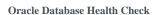
Free -g

```
[oracle@dbsingle1 ~]$ free -g
total used free shared buff/cache available

Mem: 2 0 0 0 1 1

Swap: 1 0 1

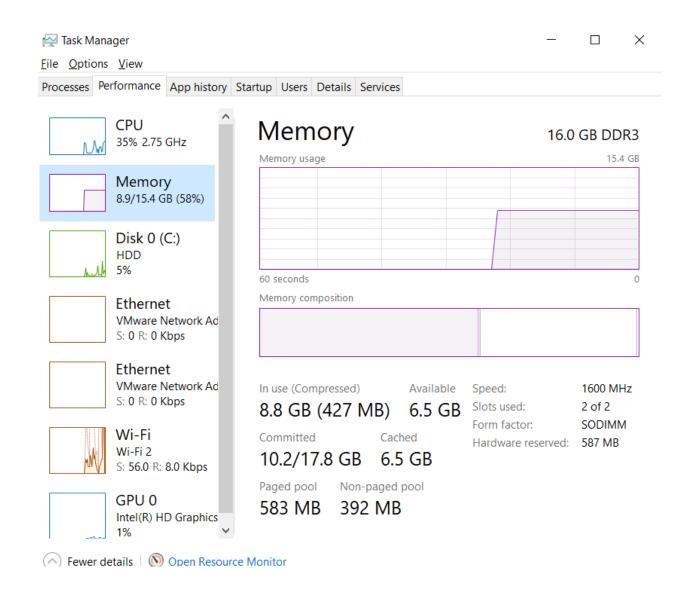
[oracle@dbsingle1 ~]$
```



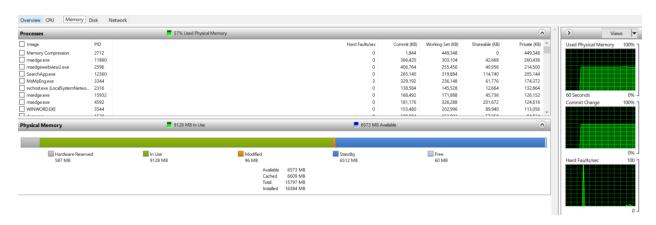
cat /proc/meminfo

```
[oracle@dbsinglel ~]$ cat /proc/meminto
                2687428 kB
MemTotal:
                830484 kB
MemFree:
MemAvailable:
                1817240 kB
Buffers:
                 47384 kB
Cached:
                1044660 kB
                 0 kB
SwapCached:
                205920 kB
Active:
                1260872 kB
Inactive:
Active(anon):
                 2276 kB
                 394012 kB
Inactive(anon):
Active(file):
                 203644 kB
Inactive(file):
                 866860 kB
                12396 kB
Jnevictable:
Mlocked:
                  12396 kB
                2097148 kB
SwapTotal:
               2097148 kB
SwapFree:
Dirty:
                      0 kB
Writeback:
                      0 kB
                 386160 kB
AnonPages:
Mapped:
                 192880 kB
Shmem:
                  10936 kB
KReclaimable:
                 100664 kB
Slab:
                 191204 kB
SReclaimable:
                 100664 kB
SUnreclaim:
                 90540 kB
KernelStack:
                 6048 kB
```

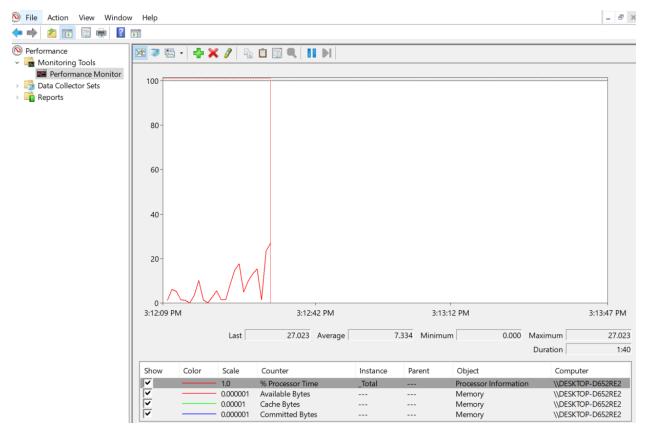
vmstat 1


pro	CS		mem	ory		swa	p	io-		syste	m		cpu		-
r	b	swpd	free	buff	cache	si	so	bi	bo	in	cs u	เร ร	y id wa	st	;
1	0	0 8	29980	47384	1145364	0	0	0	0	93	156	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	101	177	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	88	154	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	94	169	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	94	163	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	288	289	2	1 97	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	84	147	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	71	135	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	71	136	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	77	145	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	96	177	0	0 100	0	0
0	0	0 8	29980	47384	1145364	0	0	0	0	108	200	0	0 100	0	0

Using Task Manager:


- Press Ctrl + Shift + Esc to open Task Manager.
- Go to the **Performance** tab, and select **Memory** on the left.

Using Resource Monitor:


- Open Task Manager (Ctrl + Shift + Esc), go to the **Performance** tab, and click on **Open Resource Monitor**.
- Switch to the **Memory** tab to get detailed information about memory utilization.

Using Performance Monitor (PerfMon):

- Press Windows + R, type perfmon, and press Enter.
- In **Performance Monitor**, you can add memory-related counters to track usage.
 - o Right-click in the window, choose **Add Counters**.
 - o Select **Memory**, and choose counters like:
 - Available MBytes
 - Committed Bytes
 - Cache Faults/sec
 - Page Faults/sec

• Redo Log File Should be on Fast Storage

dd if=/dev/zero of=testfile bs=1G count=1 oflag=direct

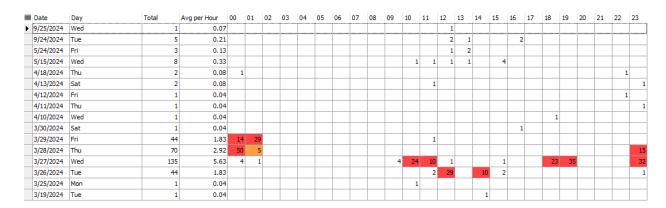
```
[root@dbsingle1 u01]# dd if=/dev/zero of=testfile bs=1G count=1 oflag=direct
1+0 records in
1+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 5.53857 s, 194 MB/s
```

dd if=testfile of=/dev/null bs=1G count=1 iflag=direct

```
[root@dbsingle1 u01]# dd if=testfile of=/dev/null bs=1G count=1 iflag=direct
1+0 records in
1+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 1.17953 s, 910 MB/s
```

winsat disk -drive c


```
Windows System Assessment Tool
 Running: Feature Enumeration ''
 Run Time 00:00:00.00
 Running: Storage Assessment '-drive c -ran -read'
 Run Time 00:00:12.48
 Running: Storage Assessment '-drive c -seq -read'
 Run Time 00:00:09.50
 Running: Storage Assessment '-drive c -seq -write'
 Run Time 00:00:07.34
 Running: Storage Assessment '-drive c -flush -seq'
 Run Time 00:00:05.06
 Running: Storage Assessment '-drive c -flush -ran'
 Run Time 00:00:16.81
 Dshow Video Encode Time
                                              0.00000 s
 Dshow Video Decode Time
                                              0.00000 s
 Media Foundation Decode Time
                                             0.00000 s
 Disk Random 16.0 Read
                                             1.37 MB/s
                                                                3.7
 Disk Sequential 64.0 Read
                                             88.06 MB/s
                                                                6.3
 Disk Sequential 64.0 Write
                                             113.00 MB/s
                                                                  6.8
 Average Read Time with Sequential Writes
                                             2.627 ms
                                                               6.8
 Latency: 95th Percentile
                                              29.179 ms
                                                                3.6
 Latency: Maximum
                                             134.047 ms
                                                                7.6
 Average Read Time with Random Writes
                                              7.589 ms
                                                               5.1
 Total Run Time 00:00:51.42
```


Backups Should Be Copy External Storage Like Tape Drive or Other Storage.

Oracle Database Engine Health Check

An Oracle Database Engine Health Check is essential for maintaining optimal performance and involves monitoring several critical components. The System Global Area (SGA) should be appropriately sized to minimize memory contention, while the Program Global Area (PGA) needs careful management to ensure efficient memory allocation for session data and sorting operations. Additionally, the size of the redo logs plays a significant role in recovery performance, and resizing them can prevent frequent log switches that may hinder throughput. Monitoring log switches is crucial, as frequent occurrences can indicate transaction volume issues, and analyzing wait events provides insights into resource contention, helping identify bottlenecks and optimize the database environment effectively.

- **System Global Area (SGA)**: This shared memory area contains data and control information for the Oracle instance, and its size should be tuned to accommodate the workload, minimizing memory contention.
- Program Global Area (PGA): This memory region is allocated to each Oracle process, and monitoring its usage helps ensure efficient memory allocation for sorting, hashing, and managing session data.
- Redo Log Size: The size of the redo log files impacts recovery performance; appropriately sizing these logs can enhance database recovery speed and prevent frequent log switches.
- **Log Switches**: Frequent log switches can indicate issues with transaction volume or log size, and monitoring this helps in optimizing the log configuration for better throughput.

- Wait Events: Analyzing wait events provides insights into resource contention, helping
 identify bottlenecks and performance issues, which is essential for tuning and
 optimizing the database environment.
- Shared Server and Dedicated Server Process

For Configure Shared Server

```
select name, value from gv$parameter where name in
('shared_servers', 'dispatchers', 'max_shared_servers', 'shared_server_sessions', 'm
ax_dispatchers');
SELECT * FROM V$SHARED_SERVER;
SELECT * FROM V$DISPATCHER;
ALTER SYSTEM SET SHARED_SERVERS = 5;
ALTER SYSTEM SET DISPATCHERS = '(PROTOCOL=TCP)(DISPATCHERS=3)';
ALTER SYSTEM SET MAX_SHARED_SERVERS = 10;
ALTER SYSTEM SET SHARED_SERVER_SESSIONS = 100;
ALTER SYSTEM SET MAX_DISPATCHERS = 5;
SELECT * FROM V$SHARED_SERVER;
SELECT * FROM V$DISPATCHER;
```

Monitor Block Tracking File Size which use for Incremental Backup.

```
ALTER DATABASE Disable BLOCK CHANGE TRACKING;
ALTER DATABASE ENABLE BLOCK CHANGE TRACKING USING FILE
'/u01/blocktracking.ora';
SELECT filename, status, bytes FROM v$block_change_tracking;
```

Configure Keep_Pool and Move Frequently Used Objects in Keep Pool

```
select table_name,BUFFER_POOL from dba_tables where OWNER='T24' AND not BUFFER_POOL='DEFAULT'; alter TABLE T24.F_BATCH storage (buffer_pool keep);
```


Oracle Database Processes Execution Level Health Check

An Oracle Database Execution Level Health Check focuses on monitoring and optimizing SQL query performance and execution plans. It involves analyzing SQL statements using tools like **EXPLAIN PLAN**, **SQL Trace**, and **TKPROF** to identify inefficient queries, missing indexes, or suboptimal joins. The check also reviews **bind variable usage**, **index efficiency**, and **parallel execution** settings to enhance performance. By detecting long-running queries or heavy resource-consuming statements, this health check ensures that database operations are executed optimally, improving overall query performance and resource utilization.

Operational Health Check

• Archive Log Location Space Monitoring

```
SELECT TRUNC (first_time) "Date", inst_id, TO_CHAR (first_time, 'Dy') "Day",
COUNT (1) "Total",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '00', 1, 0)) "h0",
SUM (DECODE (TO CHAR (first time, 'hh24'), '01', 1, 0)) "h1",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '02', 1, 0)) "h2",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '03', 1, 0)) "h3",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '04', 1, 0)) "h4",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '05', 1, 0)) "h5",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '06', 1, 0)) "h6",
SUM (DECODE (TO CHAR (first time, 'hh24'), '07', 1, 0)) "h7",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '08', 1, 0)) "h8",
SUM (DECODE (TO CHAR (first time, 'hh24'), '09', 1, 0)) "h9",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '10', 1, 0)) "h10".
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '11', 1, 0)) "h11",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '12', 1, 0)) "h12",
SUM (DECODE (TO CHAR (first time, 'hh24'), '13', 1, 0)) "h13",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '14', 1, 0)) "h14",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '15', 1, 0)) "h15",
SUM (DECODE (TO CHAR (first time, 'hh24'), '16', 1, 0)) "h16",
SUM (DECODE (TO CHAR (first time, 'hh24'), '17', 1, 0)) "h17",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '18', 1, 0)) "h18",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '19', 1, 0)) "h19",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '20', 1, 0)) "h20",
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '21', 1, 0)) "h21",
```



```
SUM (DECODE (TO_CHAR (first_time, 'hh24'), '22', 1, 0)) "h22", SUM (DECODE (TO_CHAR (first_time, 'hh24'), '23', 1, 0)) "h23", ROUND (COUNT (1) / 24, 2) "Avg" FROM gv$log_history WHERE thread# = inst_id AND first_time > sysdate -7 GROUP BY TRUNC (first_time), inst_id, TO_CHAR (first_time, 'Dy') ORDER BY 1,2;
```

Monitor Flash Recover Area

select name, floor(space_limit / 1024 / 1024/1024) "Size GB", ceil(space_used / 1024 / 1024/1024) "Used GB" from v\$recovery_file_dest order by name;

Check Tablespace Size

```
SELECT ts.tablespace_name,
   size_info.megs_alloc,
   size_info.megs_free/1024,
   size_info.megs_used,
   size info.pct free,
   size info.pct used,
   size info.MAX,
   size info. Available /1024 Available GB,
   Available Percentage
 FROM (SELECT a.tablespace name,
        ROUND (a.bytes alloc / 1024 / 1024) megs alloc,
        ROUND (NVL (b.bytes_free, 0) / 1024 / 1024) megs_free,
        ROUND ( (a.bytes_alloc - NVL (b.bytes_free, 0)) / 1024 / 1024)
         megs used,
        ROUND ((NVL (b.bytes_free, 0) / a.bytes_alloc) * 100)
         Pct Free,
        100 - ROUND ((NVL (b.bytes free, 0) / a.bytes alloc) * 100)
         Pct used,
        ROUND (maxbytes / 1048576) MAX,
       ((ROUND (maxbytes / 1048576))- (ROUND ( (a.bytes_alloc - NVL (b.bytes_free, 0)) / 1024 /
1024))) as Available
       , (((ROUND (maxbytes / 1048576))- (ROUND ( (a.bytes_alloc - NVL (b.bytes_free, 0)) / 1024 /
1024))) /(ROUND (maxbytes / 1048576)))*100 as Available Percentage
     FROM ( SELECT f.tablespace_name,
             SUM (f.bytes) bytes_alloc,
             SUM (
               DECODE (f.autoextensible,
                   'YES', f.maxbytes,
```



```
'NO', f.bytes))
              maxbytes
          FROM dba data files f
        GROUP BY tablespace name) a,
       ( SELECT f.tablespace name, SUM (f.bytes) bytes free
          FROM dba free space f
        GROUP BY tablespace_name) b
    WHERE a.tablespace_name = b.tablespace_name(+)
    UNION ALL
     SELECT h.tablespace name,
         ROUND (SUM (h.bytes_free + h.bytes_used) / 1048576) megs_alloc,
         ROUND (
           SUM (
             (h.bytes free + h.bytes used) - NVL (p.bytes used, 0))
          / 1048576)
          megs free,
         ROUND (SUM (NVL (p.bytes used, 0)) / 1048576) megs used,
         ROUND (
           (SUM (
               (h.bytes_free + h.bytes_used)
              - NVL (p.bytes used, 0))
           / SUM (h.bytes_used + h.bytes_free))
          * 100)
          Pct Free,
          100
         - ROUND (
            (SUM (
                (h.bytes free + h.bytes used)
               - NVL (p.bytes used, 0))
             / SUM (h.bytes used + h.bytes free))
           * 100)
          pct_used,
         ROUND (
          SUM (
             DECODE (f.autoextensible,
                 'YES', f.maxbytes,
                 'NO', f.bytes)
            / 1048576))
          MAX,
          (((ROUND (SUM (DECODE (f.autoextensible, 'YES', f.maxbytes, 'NO', f.bytes) / 1048576))) -
(ROUND (SUM (NVL (p.bytes_used, 0)) / 1048576)))/1024) as Available_GB
          ,((((ROUND (SUM (DECODE (f.autoextensible, YES', f.maxbytes, 'NO', f.bytes) / 1048576))) -
(ROUND (SUM (NVL (p.bytes_used, 0)) / 1048576)))) /(ROUND (SUM (DECODE (f.autoextensible, 'YES',
f.maxbytes, 'NO', f.bytes) / 1048576)))) * 100 as Available_Percentage
      FROM sys.v_$TEMP_SPACE_HEADER h,
        sys.v $Temp extent pool p,
```



```
dba_temp_files f
WHERE p.file_id(+) = h.file_id
AND p.tablespace_name(+) = h.tablespace_name
AND f.file_id = h.file_id
AND f.tablespace_name = h.tablespace_name
GROUP BY h.tablespace_name) size_info,
sys.dba_tablespaces ts,
sys.dba_tablespace_groups tsg
WHERE ts.tablespace_name = size_info.tablespace_name
AND ts.tablespace_name = tsg.tablespace_name(+)
order by Available_Percentage asc;
```

Monitor Database Backups

```
SELECT status status,
object_type object_type,
input_bytes / 1024 / 1024 / 1024 input_bytes,
output_bytes / 1024 / 1024 / 1024 output_bytes,
TO_CHAR (start_time, 'mm/dd/yyyy:hh:mi:ss') AS start_time,
TO_CHAR (end_time, 'mm/dd/yyyy:hh:mi:ss') AS end_time
FROM v$rman_status
WHERE start_time > SYSDATE - 1 AND operation = 'BACKUP';
```

Monitor Database Alert Log

Performance Related Health Check

```
Check Database Session Locking
select blocking_session, sid, serial#, wait_class, seconds_in_wait
from
    v$session where blocking_session is not NULL order by blocking_session;
select username, sid,serial#,sql_id , wait_time from v$session where (sid ) in
(
    select blocking_session from v$session
);
select inst_id,last_call_et,username,machine,event,status from gv$session where username='T24'
and lower(event) like '%contention%';
select * from gv$session a , gv$lock b where a.sid=b.sid and A.INST_ID=b.inst_id and
username='T24' and lower(event) like '%contention%';
select * from dba_blockers;
```


Check the Queries which last_call_et column value high and increasing in your Database

select event,last_call_et,username,module,program,machine,sql_id,prev_sql_id, ((select max(sql_text) from gv\$sql a where a.sql_id=s.sql_id)) as sql1, ((select max(sql_text) from gv\$sql a where a.sql_id=s.prev_sql_id)) as sql2 from gv\$session s where status='ACTIVE' and not username is null order by last_call_et desc;

Check Active / In Active Database Sessions

select inst_id,sid,last_call_et,username,machine,event,status from gv\$session where username='T24' order by last_call_et desc; select inst_id,sid,last_call_et,username,machine,event,status from gv\$session where username='T24' and status='ACTIVE' order by last_call_et desc;

Check User Level Session Locking.

TO CHAR (lk.id1) lock id1,

```
SELECT se.inst_id,se.last_call_et,
lk.SID, se.username, se.OSUser, se.Machine,DECODE (lk.TYPE, TX', Transaction', TM',
'DML','UL', 'PL/SQL User Lock',lk.TYPE)
lock_type, DECODE (lk.lmode, 0, 'None', 1, 'Null',
2, 'Row-S (SS)',
3, 'Row-X (SX)',
4, 'Share',
5, 'S/Row-X (SSX)',
6, 'xclusive',
TO_CHAR (lk.lmode))
mode_held,
DECODE (lk.request,
0, 'None',
1, 'Null',
2, 'Row-S (SS)',
3, 'Row-X (SX)',
4, 'Share',
5, 'S/Row-X (SSX)',
6, 'Exclusive',
TO CHAR (lk.request))
mode_requested,
```


TO_CHAR (lk.id2) lock_id2, ob.owner, ob.object_type, ob.object_name, DECODE (lk.Block, 0, 'No', 1, 'Yes', 2, 'Global') block, se.lockwait FROM GV\$lock lk, dba_objects ob, GV\$session se WHERE lk.TYPE IN ('TX', 'TM', 'UL') AND lk.SID = se.SIDAND lk.id1 = ob.object_id(+) AND lk.inst_id = se.inst_id and last_call_et > 100;

Generate AWR Report

Check "DB Time"

	Snap Id	Snap Time	Sessions	Cursors/Session	Instances
Begin Snap:	47761	20-Dec-23 14:00:13	408	15.9	2
End Snap:	47762	20-Dec-23 15:00:18	399	16.3	2
Elapsed:		60.08 (mins)			
DB Time:		292.35 (mins)			

Check "SQL ordered by Elapsed Time"

SQL ordered by Elapsed Time

- Resources reported for PL/SQL code includes the resources used by all SQL statements called by the code.
- % Total DB Time is the Elapsed Time of the SQL statement divided into the Total Database Time multiplied by 100 %Total Elapsed Time as a percentage of Total DB time (SCPU CPU Time as a percentage of Elapsed Time (SCPU CPU Time as a percentage of Elapsed Time (SCPU CPU Time as a percentage of Elapsed Time (SCPU CPU Time as a percentage of Elapsed Time (SCPU CPU Time as a percentage of Elapsed Time (SCPU CPU Time as a percentage of Elapsed Time (SCPU CPU CPU Time as a percentage of Elapsed Time (SCPU CPU CPU

Elapsed Time (s)	Executions	Elapsed Time per Exec (s)	%Total	%CPU	%IO	SQL Id	SQL Module	SQL Text
2,740.68	12,758	0.21	15.62	22.47	71.79	3gd400tz9ra7b	CM-ESTMT	SELECT IMD.D1_TO_DTTM as D1_TO
2,534.60	185	13.70	14.45	0.01	0.00	1vtwyftsq8m5w	D1-IMD	UPDATE CI_BATCH_CTRL SET LAST
2,288.13	317	7.22	13.04	83.72	1.76	65xtjmhy3bk76	CILQTDSP	select todoentry_0TD_PRIORIT
2,137.54	45,674	0.05	12.19	47.51	5.38	8fp2704uvcjyz	CM-ESTMT	select f1_gtt_col1_dttm F1_GTT
1,725.57	87	19.83	9.84	93.77	0.00	f92xg1zmjaqzn	CILQTDSP	SELECT MIN(td.TD_PRIORITY_FLG)
1.334.52	48.593.913	0.00	7.61	27.93	0.00	9kv7b6maf4cmc	D1-IMD	insert into F1 GENERIC GTT (F1

Check Top 10 Foreground Events by Total Wait Time

Top 10 Foreground Events by Total Wait Time

Event	Waits	Total Wait Time (sec)	Avg Wait	% DB time Wait Class
DB CPU		10.7K		61.3
enq: TX - row lock contention	259	2545.6	9.83 s	14.5 Application
cell single block physical read: pmem cache	17,900,482	2278.9	127.31us	13.0 Other
cell single block physical read: flash cache	5,830,804	1805.8	309.71us	10.3 User I/O

Wait Classes by Total Wait Time

Wait Classes by Total Wait Time

Wait Class	Waits	Total Wait Time (sec)	Avg Wait Time	% DB time	Avg Active Sessions
DB CPU		10,745		61.3	3.0
User I/O	9,398,732	2,760	293.63us	15.7	0.8
Application	4,517	2,554	565.37ms	14.6	0.7
Other	22,984,546	2,413	104.99us	13.8	0.7
Cluster	24,420,322	1,250	51.20us	7.1	0.3

Check Table Stats

 $select\ max(LAST_ANALYZED), 'execute\ dbms_stats.gather_table_stats(ownname=>' \parallel "" \parallel 't24' \parallel "" \parallel ',' \parallel 'tabname=>' \parallel "" \parallel table_name \parallel "" \parallel ',DEGREE=> 10,\ estimate_percent=> 10\);' from\ dba_tab_statistics\ where\ owner='T24'\ and\ stale_stats='YES'\ group\ by\ table_name\ order\ by\ max(LAST_ANALYZED)\ asc;\ select\ max(LAST_ANALYZED),'execute\ dbms_stats.gather_table_stats(ownname=>' \parallel "" \parallel 't24' \parallel "" \parallel ',' \parallel 'tabname=>' \parallel "" \parallel table_name \parallel "" \parallel ',DEGREE=> 10,\ estimate_percent=> 10\);'\ from\ dba_tab_statistics\ where\ owner='T24'\ and\ stale_stats='YES'\ group\ by\ table_name\ order\ by\ max(LAST_ANALYZED)\ asc;$

select owner,table_name,LAST_ANALYZED from dba_tables;

Check Invalid Objects

select * from dba_ind_partitions where index_owner='T24' and not status='USABLE'; select index_name,status from dba_indexes where not status='VALID' and owner='T24';

Check Execution Plan for Query

```
explain plan for insert into test1 select * from test1;
select * from table(dbms_xplan.display);
```

Check Usage of Indexes

```
ALTER INDEX abc1 MONITORING USAGE;
SELECT index_name, table_name, monitoring, used FROM V$OBJECT_USAGE;
ALTER INDEX abc1 NO MONITORING USAGE;
```

Check List of Queries Perform Full Scan

```
SELECT sql_id,
    child_number,
    object_owner,
    object_name,
    operation,
    options
FROM v$sql_plan
WHERE operation = 'TABLE ACCESS'
AND options = 'FULL';
```